Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.

نویسندگان

  • M Tehei
  • J C Smith
  • C Monk
  • J Ollivier
  • M Oettl
  • V Kurkal
  • J L Finney
  • R M Daniel
چکیده

The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is tau = 7.95 +/- 1.02 ps for the native DHFR and tau = 20.36 +/- 1.80 ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to high temperatures through macromolecular dynamics by neutron scattering.

Work on the relationship between hyperthermophile protein dynamics, stability and activity is reviewed. Neutron spectroscopy has been applied to measure and compare the macromolecular dynamics of various hyperthermophilic and mesophilic proteins, under different conditions. First, molecular dynamics have been analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii a...

متن کامل

Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP+.

A crystal of Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ of 4×1.3×0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 Å resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 Å resolution X-ray d...

متن کامل

Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis

Dihydrofolate reductase from Escherichia coli (ecDHFR) serves as a model system for investigating the role of protein dynamics in enzyme catalysis. We discuss calculations predicting a network of dynamic motions that is coupled to the chemical step catalyzed by this enzyme. Kinetic studies testing these predictions are presented, and their potential use in better understanding the role of these...

متن کامل

Protein dynamics and stability: the distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering.

The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermo...

متن کامل

Refolding of Escherichia coli dihydrofolate reductase: sequential formation of substrate binding sites.

The kinetics of refolding of Escherichia coli dihydrofolate reductase (EC 1.5.1.3) have been examined upon dilution of unfolded enzyme in 4.5 M urea to 1.29 M urea in 0.02 M phosphate buffer (pH 7.2) at 10 degrees C. Changes in the intrinsic protein fluorescence on refolding are characterized by four phases. Based on changes in the amplitudes of these phases, as a consequence of quenching of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 2006